<바이오산업기술개발(디지털헬스케어) 품목 RFP>

ıна			즈과여구	'25년	수행기 간	Ī	마제유	형		
내역 사업	순번	연구개발과제명	주관연구 개발기관	'25년 지원규모 (백만원)	간 (개월)	가	나	다	과제특징	7金
	1	퇴행성 신경질환 재활을 위한 온디바이스 AI 햅틱 훈련기기 개발	중소·중견 기업	820	57	일반	혁신 제품	품목 지정		징수
	2	상지 기능장애 통합형 재활훈련 기기 및 상호작용 재활 플랫폼 개발	중소·중견 기업	820	57	일반	혁신 제품	품목 지정		징수
	3	신경근 질환 및 인공호흡기 의존 환자의 자율 호흡 복원을 위한 횡격신경 자극기 개발	중소·중견 기업	840	57	일반	혁신 제품	품목 지정		징수
	4	청각 이상 증상 개선을 위한 청각보조 및 치료기기 개발	중소·중견 기업	840	57	일반	혁신 제품	품목 지정		징수
디지털	5	자폐스펙트럼 장애 아동의 의사소통 능력 향상을 위한 웨어러블 경두개자극 및 디지털치료기기 융합 시스템 개발	중소·중견 기업	820	57	일반	혁신 제품	품목 지정		징수
헬스 케어	6	시스템 개발 다중감각 자극 기반 뇌파연동 인지기능 개선 기기 개발	중소·중견 기업	840	45	일반	혁신 제품	품목 지정		징수
	7	황반변성 예방 및 관리를 위한 망막 병변 치료기기 개발	중소·중견 기업	900	57	일반	혁신 제품	품목 지정		징수
	8	림프부종 완화 및 관리를 위한 다중 자극 기반 레이저-초음파 치료기기 개발	중소·중견 기업	820	57	일반	혁신 제품	품목 지정		징수
	9	인공지능 피부 진단 및 최적 치료 사양 제공 기능 탑재 고주파-초음파 융복합 피부 치료기기 개발	중소·중견 기업	820	57	일반	혁신 제품	품목 지정		징수
	10	AI 기반 멀티파라미터 생체 모니터링 장치 및 실시간 임상 악화 조기경보 시스템 개발	중소·중견 기업	840	57	일반	혁신 제품	품목 지정		징수
	11	디지털 헬스케어용 소형 저전력 온디바이스 AI 핵심기술 개발	제한없음 (기업참여 필수)	1,240	57	일반	혁신 제품	품목 지정	표준연계	징수

품목번호			기술-디지털헬스 일반-01	산업기	술	중분류 I		중분류ㅍ
개발형태	□ 원천기	술형	☑ 혁신제품형	분류	-	기능복원/보조 복지기기	및	
혁신도전형		세계최	초	□ 세계	ᅨ최고	_	~	해당없음
+ 34 71 -	분야				첨단	바이오		
초격차프로젝트 (해당)	미션		디지털헐	실스 기반	기술	· 확보 및 생F	H계 2	진성
(-110)	프로젝트	다중	생체정보 기반 다	지털헬스	느 기	기 및 바이오박	네이	터 융합 기술개발
연계유형	☐ BI 연	계	□ IP R&D연계	□ 디자	인연기	계 🔲 표준역	견계	☑ 해당없음
	□ 경쟁형	형과제	□ 복수형고	나 제		국가핵심기술		국제공동
특성분류	□ 대형성	통합형	□ 민간투지	ŀ연계형		서비스형		안전관리형
〒 0 正 π	□ 원스님	톱형	□ 유연 컨:	소시엄		챌린지 트랙		초고난도 과제
	□ 탄소	중립	ESG	j		E S	∨ G	□ 해당없음
R&D 자율성트랙	~	R&D 7	자율성트랙(일반)			□ R&D 자	율성	트랙(지정)
품목명	<u> </u>	퇴행성	신경질환 재활을	위한 온	디바	이스 AI 햅틱 :	훈련기	기기 개발
			(TRL : [시	작] 5단계	∥ ∽	[종료] 8단계)		
111 -1 -11								

□ 개념

- o 퇴행성 신경질환(알츠하이머병, 파킨슨병, 다발성 경화증 등) 환자의 재활훈련 지원을 위해 LLM 기반 맞춤형 콘텐츠 제공이 가능한 소형 의료용 햅틱 훈련기기 개발
- 사용자가 제공한 의료정보와 일상생활의 정량화된 라이프로그(개인의 정량화된 자아; Holistic Quantified Self)를 학습하여 개인맞춤형 콘텐츠를 제공하는 LLM 기반 인공지능 허브 디바이스
- * 환자 정보 보안을 위한 sLLM과 콘텐츠 생성에 활용되는 공개 LLM을 효과적으로 융합 활용

※ 핵심 목표 : 임상 근거 기반 혼합현실 치료 및 재활 콘텐츠 5종 이상 개발

- ㅇ 퇴행성 신경질환 재활훈련을 위한 소형 모바일 햅틱 훈련기기 개발
- 환자상태에 대한 정량적 측정이 가능하고, 혼합현실 콘텐츠 등과 융합하여 높은 순응도와 운동 효과 발휘가 가능한 소형 햅틱 인터페이스 장치 형태로 구현
- 병원내치료, 재택치료, 방문치료 등 다양한 방법으로 치료가 가능하고, 환자 개인이 자가 관리에 활용할 수 있도록 적정 비용·크기의 하드웨어 개발
- 개인이 제공한 건강 데이터, 웨어러블 디바이스에 획득된 정보, 가정 내의 각 디바이스에서 획득된 정보* 및 생활정보 등을 해석하여 사용자의 맞춤형 콘텐츠 제공이 가능한 로컬 및 대용량 언어 모델(LLM) 병용 모델 개발
- 환자의 순응도 높은 라이프로그 지원하는 인공지능 디지털 어시스턴트 개발
- * 필요시 추가 디바이스의 개발도 가능하나, 가급적 기존 기기를 활용·연동하여 연구자원을 햅틱 훈련기기 개발에 집중

- o 학습된 환자 개인의 의료정보, 라이프로그를 기반으로 최적의 재활 및 운동 치료 콘텐츠와 순응도 높은 상호작용을 제공하는 생성형 AI 기반 햅틱 인터페이스 개발
- 재택 재활훈련 위한 햅틱 인터페이스 및 제어 기술 개발
- 개인별 상황에 따른 최적의 인터랙션이 가능한 시각적 가이드라인 개발
- 퇴행성 신경질환 환자의 증상 관리를 위한 자가 운동 훈련 프로그램 개발
- ㅇ 개발제품의 안전성 및 유효성 검증 및 인허가
- 개발제품의 안전성 및 유효성 검증을 위한 확증 임상 연구(N=30이상)
- 의료기기에 해당하는 경우 인허가 완료

- 환자 순응도 (%), 질환 특화 재활 훈련 콘텐츠 종류 (종), 환자 포커스 그룹 대상의 탐색 임상시험 성격의 유효성 평가 (환자 수와 임상시험 종류의 수) 등

2. 지원 필요성

□ 지워필요성

- o (정책적 측면) 사회적 요구도 높은 퇴행성 신경 질환 대응 기술 개발 지원
- 일상 생활 속에서 질환 상태 관리 및 다양한 자가 재활 훈련 지원 필요
- 병원 방문을 줄이는 라이프로그 및 재택 훈련 및 자가 관리 지원 기술 필요
- ㅇ (기술적 측면) 의료용 햅틱 인터페이스와 확장 현실 컨텐츠 융합 기기 기술 확보
- 재활효과 증진을 위한 라이프로그 분석 LLM 기술의 확보
- ㅇ (시장적 측면) 인공지능 기술을 활용한 삶의 질 향상 지원기기 시장 선도
- 독거화 되는 노령 인구를 위한 맞춤형 기기를 통해 의료제품 시장 창출
- o (사회적 측면) 사용자 맞춤형 재활 및 훈련을 통하여 병증의 악화를 예방하여 추가 적인 사회적 비용 지출을 예방

3. 활용분야

□ 활용분야

- ㅇ 퇴행성 신경질환 맞춤형 인공지능 콘텐츠 제공 엔진 융합된 자가 질환 관리 기기
- ㅇ 사용자별 인터랙션이 가능한 맞춤형 햅틱 인터랙션 의료기기
- 상지 재활 훈련 분야의 범용 적용 가능한 햅틱 인터페이스 기기
- ㅇ 개인맞춤형 학습모델에 기반하여 높은 몰입도를 제공하는 혼합현실 의료기기

- o **연구개발기간 :** 57개월 이내(1차년도 개발기간 : 9개월, 2~5차년도 : 각 12개월)
- o 정부지원연구개발비: '25년 8.2억원 이내(총 정부지원연구개발비 52억원 이내)
- o 주관연구개발기관 : 중소·중견 기업
- o 기술료 징수여부 : 징수

품목번호		오산입 -품목-		디지털헬스)2	산업기	_	중분류	I	중남	분류표		
개발형태	□ 원천기	술형	√ ġ	력신제품형	분루	÷	기능복원/보조 등	및 복지기	치료기기	및 진단기기		
혁신도전형		세계최	초		□ 세 ²	ᅨ최그	1	V	해당없	음		
+ 7 + 5 - 7 11 -	분야					첨단	바이오					
초격차프로젝트 (해당)	미션	-				J스 기반 기술 확보 및 생태계 조성						
(-110)	프로젝트	다중	생체정	보 기반 디	지털헬스	느 기	기 및 바이의	2빅데0	터 융합	기술개발		
연계유형	☐ BI 연	계	☐ IP	R&D연계	□ 디자	인연	계 🗆 표	준연계	✓ 5	대당없음		
	□ 경쟁	형과제		□ 복수형과	제		국가핵심기를	<u> </u>	국제공	동		
특성분류	□ 대형	통합형		□ 민간투자	연계형		서비스형		안전관	리형		
नंदित	□ 원스님	톱형		□ 유연 컨소	스시엄		챌린지 트랙		초고난	도 과제		
	□ 탄소	중립		ESG			E S	▼ G	□ ¢	배당없음		
R&D 자율성트랙	V	R&D 7	자율성.	트랙(일반)			□ R&D	자율성.	트랙(지정	4)		
품목명	상	지 기능	당아	통합형 재횔	훈련 기	기	및 상호작용	재활 플	플랫폼 개	발		
				(TRL : [시작	박] 5단기	∜ ∽	[종료] 8단계	制)				

□ 개념

- ㅇ 마비·절단 등으로 인한 상지기능 장애 환자를 위한 맞춤형 재활훈련기기 개발
 - 환자의 생체신호 및 라이프로그를 분석하여 개인별 최적화된 재활 강도와 난이도를 제공하고, 정량적 데이터 기반으로 재활 진행 상황을 객관적으로 평가하여 재활 진행상황에 따른 단계별 개인 맞춤형 훈련을 지원
 - * 근전도 신호를 이용한 사용자 의도 인식, 데이터 기반 평가 분석 시스템, 인공지능 기반 맞춤형 재활훈련 프로그램, 몰입형 재활훈련을 위한 확장현실 기반 감각 피드백 제어 기술 등

※ 핵심 목표 : 근전도 기반 동작의도감지 예측 정확도 R²값 0.8 이상

- o 마비·절단 통합형 상지 재활훈련 시스템 기술 개발
- 다자유도 상지모션 및 훈련동작* 제어를 위한 재활기기 데이터 업데이트(변환시간 포함) 속도 ≥ 200Hz
- * Active / Active-assist / Passive / Resistive
- 근전도 신호분석 기반 상지마비환자 동작의도 감지 기술 개발
- 상지마비환자 개인맞춤형 재활훈련 인공지능 알고리즘 개발
- 환자 맞춤형 다중채널 생체신호 기반 직관적 손동작 제어 훈련모델 개발
- 재활훈련용 의수형 근전전동장치 2종(손목회전기능, 3/5지 타입, 파지력 100N이상) 개발
- ㅇ 환자의 몰입감 및 재활 효과성 증대를 위한 상호작용 기반 훈련 지원기술 개발
- 환자의 실시간 훈련 피드백을 위한 멀티모달 상호작용 피드백 기술 개발
- * 촉각/시각/청각 등 3개 이상 선정하고, 상호작용 피드백 기술을 재활훈련 시스템에 탑재

- 환자의 훈련 몰입감 강화를 위한 콘텐츠 3종* 개발
- * 상지기능장애 훈련분야별 근력강화 훈련, 운동능력 향상훈련, 일상생활 동작훈련 등
- 환자 관리 및 운동 분석 등 동적 시각화 인터페이스 개발
- ㅇ 개발제품의 안전성 및 유효성 검증
- 개발제품의 안전성 및 유효성 검증을 위한 병원 확증 임상 연구(N=30이상)
- 의료기기 인허가 완료

- 재활훈련 시스템 구성(안) 데이터(변환시간) 업데이트 속도 / 근전도 시스템 정밀도
- 재활 훈련 콘텐츠 종류 및 상호작용 피드백 정보 개수
- 상지재활로봇 의료기기 3등급 인허가, SCI 논문(재활 효과 관련)

2. 지원 필요성

□ 지원필요성

- o (정책적 측면) AI, VR, AR 등 첨단기술을 활용한 새로운 디지털 의료 서비스 모델의 창출을 통해 민간 주도의 디지털 플랫폼 생태계 확장 및 관련 산업 경쟁력 강화
- o (기술적 측면) MR, AI, 센서 기술 등을 융합한 개인 맞춤형 재활기술은 디지털 의료기기 분야의 핵심기술로 관련 기술의 주도권 확보를 통한 국가 경쟁력 강화
- (시장적 측면) 재활로봇 범용화를 통해 가격 장벽을 낮추고, 의료보험수가 연계를 통한 사용자 확대 및 신시장 창 출, 글로벌 시장 경쟁력 확보
- o (사회적 측면) 고가 재활치료기기의 대중화를 통해 의료 접근성이 낮은 지역 및 계층에 양질의 재활치료를 제공함으로써 환자의 삶의 질 향상과 의료 불평등 해소

3. 활용분야

□ 활용분야

- o 절단·마비 등 상지기능에 장애를 가진 환자를 위한 맞춤형 재활프로그램에 활용
- ㅇ 노인성 질환으로 인한 노인의 상지기능회복 등 다양한 상지기능장애 연계 지원
- 환자데이터를 기반으로 인공지능기술을 활용하여 정확한 예측과 개인맞춤형 치료를 제공하는 시스템 개발 및 관련 연구에 활용

- o 연구개발기간 : 57개월 이내(1차년도 개발기간 : 9개월, 2~5차년도 : 각 12개월)
- o 정부지원연구개발비: '25년 8.2억원 이내(총 정부지원연구개발비 52억원 이내)
- **주관연구개발기관** : 중소·중견 기업
- o 기술료 징수여부 : 징수

품목번호			기술-디지팀 일반-03	털헬스	산업기		중분류 I		중분류	ŧΠ
개발형태	□ 원천기	술형	☑ 혁신제	품형	분류	•	치료기기 및 진단	[인던	융합바	기오
혁신도전형		세계최	초		□세계	최고		~	해당없음	
ᅕᄸᄟᅲᆯᆐᇀ	분야				7	범단바	이오			
초격차프로젝트 (해당)	미션		디	지털헬:	스 기반	기술	확보 및 생	태계 조	성	
(9116)	프로젝트	다중	생체정보 기	반 디	지털헬스	: 기기	및 바이오	빅데이	터 융합 기	술개발
연계유형	☐ BI 연	계	☐ IP R&D	연계	□ 디자인	민연계	□ 표준	연계	☑ 해당	· 없음
	□ 경쟁	형과제	□ 복	수형과	제	□ 국	가핵심기술		국제공동	
트서ㅂㄹ	□ 대형	통합형	□ 민	간투자	연계형	□ 서	비스형		안전관리	형
특성분류	□ 원스	톱형	□ 유	연 컨소	시엄	□ 챌	린지 트랙		초고난도	과제
	□ 탄소	중립		ESG		<u></u> Ε		▽ G	□ 해딩	} 없음
R&D 자율성트랙	V	R&D 7	다율성트랙(⁽	일반)			□ R&D 7	<u>다율성</u> 트	트랙(지정)	
품목명	신경근 질환	한 및 인	<u> </u> 공호흡기 의	이존 환	자의 자	을 호흡	E 복원을 위	한 횡기	역신경 자극	기 개발
百寸〇			(TRL	: [시즈	· 1] 5단계	~ [{	종료] 8단계)		
	_									

□ 개념

- (핵심 개념) 자발적 호흡이 어려운 신경근 질환 및 인공호흡기 의존 환자의 호흡 지속성을 유지하고, 자가호흡 복귀를 촉진하기 위한 호흡패턴 모니터링 기반 비침습적 횡격신경 자극 기기 개발
- (핵심 기술) 웨어러블 형태의 생체신호 모니터링 기술로 생체정보 변화*를 측정하여 호흡 상태를 분석하고, 호흡 패턴에 따라 비침습적 횡격신경 자극**으로 호흡을 조율
 - * 호흡 소리, 근육의 움직임, 전기적 신경신호 등
 - ** 전기나 초음파 등과 같은 물리적이고 비침습적인 자극으로 횡격막 움직임 유도
- 횡격막 기능 저하 환자의 횡격막 근육을 활성화하여 호흡 기능 강화 및 재활에 사용, 신경 손상으로 자발적 호흡이 어려운 환자의 호흡 조절 및 보조 기능을 제공

※ 핵심 목표 : 호흡기능(호흡량) 강화 10% 이상의 임상효과 확보

- 이 (기술 개발) 호흡패턴 모니터링 기반 비침습적 횡격신경 자극 기기 개발
- 횡격신경을 정확히 타겟팅하면서 인접 조직(혈관, 근육, 다른 신경 등)의 불필요한 자극을 최소화하는 기술 개발
- 호흡 패턴 분석을 통한 안정적인 호흡 조율 기능 횡격신경 자극 기술 개발
- 호흡 기능 강화를 위한 최적의 횡격신경 자극 변수를 도출하고, 자극 후 생리적 반응(횡격막 두께 변화, 호흡근 활성화 등)과의 연관성 평가
- 일상환경에서 실시간 측정한 생체정보로부터 정확한 호흡 상태 측정 기술 개발
- 생체정보 획득과 분석, 개인맞춤형 횡격신경 자극 반복사용 가능 전극 개발
- 임상현장 또는 실제 사용환경 사용성 고려 제품 설계 및 디자인
- o (시험 검사) 비침습적 횡격신경 자극 기술의 안전성 및 효과성 검증
- 의료기기 규격 기준에 적합한 시제품 제작 및 안전성·성능 시험을 통해 신뢰성 확보
- o (임상 시험 및 인허가) 비임상을 통해 횡격신경 자극의 생리적 효과를 확인하고.

임상시험을 통해 의료기기 인허가 완료

- * 품목번호가 존재하지 않으므로 평가기술 및 임상시험 관련 식약처와 협의 추진(선정 후)
- 전임상시험을 통한 비침습적 횡격신경 자극 기술의 안전성 및 효과성 검증
- 비침습적 횡격신경 자극을 통한 호흡 기능 강화 효과성 입증*
- * 임상시험을 통해 횡격막 근육 운동성 강화 효과 또는 횡격막 두께 증가 등 검증
- 의료기기 인허가를 위한 임상시험 및 인허가 완료

연구개발계획서 제출시 다음의 항목의 정량적 목표치 및 상용화 수준 제시 필수

- 호흡모니터링 기능의 호흡 상태 측정 정확도 제시
- 개발 제품에 대한 외부기관 사용성 평가를 통한 만족도 평가 목표치 제시
- 시제품에 대한 안전성·성능 대한 의료기기 규격 적합 공인시험성적서 제출 (일회용 웨어러블 패치의 생체적합성 공인성적서를 포함한 의료기기 필수 성적서 확보)
- 확증 임상시험 및 인허가 등 상용화 계획

2. 지원 필요성

□ 지원필요성

- (정책적 측면) 국내에선 2022년 2월 "횡격막 조율기기를 이용한 자발 호흡 보조법" 으로 신의료기술로 등록이 되어 대체 치료법으로 주목받고 있으나, 해당 기술을 뒷 받침할 비침습적 기술 개발 및 상용화를 위한 연구개발 지원과 제도적 기반이 부족하여 기술 경쟁력 확보를 위한 정부 차원의 지원이 필요
- (기술적 측면) 상용화 횡격막 조율기기는 외과적 수술 필수 및 유선 연결로 인한 불편으로 기술적 한계를 지니고 있으나, 비침습적 횡격신경 자극 기술은 이러한 한계를 극복할 수 있는 혁신적인 대안으로 기대
- (시장적 측면) 횡격막 조율기기의 국내 기술 개발(국산화)로 해외 수입 의존도를 낮추고 국내 의료기기 산업의 자립과 성장을 촉진함. 2026년에는 60억달러로 예측 되는 글로벌 횡격막 조율기기 시장에 대한 점유율 확보 및 호흡 관련 의료기기 산업의 수출 확대를 기대
- (사회적 측면) 신경손상 중증환자 및 호흡기능 저하 환자 대상 비수술 치료법 적용으로 환자의 삶의 질 증대 및 치료 접근성 증대를 통한 의료비용 감소. 환자별 신체특성에 맞춘 맞춤형 의료기술로 치료 효과의 효율성과 안전성을 높임

3. 활용분야

□ 활용분야

- o 중증 환자 및 응급 환자를 위한 의료기기로, 신경외과 및 응급의학과를 중심으로 대형 병원과 전문 치료 기관에 납품하여 의료 현장에서의 실질적 활용.
- o 척추 통증 치료와 같이 침습적 신경자극 치료를 대체할 수 있는 혁신적 비침습 치료 기술 개발에 활용 가능.
- 횡격신경 자극으로 인한 호흡 조절 원리를 활용하여 만성 폐쇄성 폐질환, 림프부종, 수면무호흡증과 같은 다양한 순환기 질환으로 치료 범위를 확장 가능
- o 호흡 모니터링 기술을 활용하여 호흡기 질환 환자의 호흡 상태를 실시간 모니터링 하고 예측 가능한 치료 방안을 제시하는 호흡 관리 플랫폼 개발에 활용 가능

- 연구개발기가: 57개월 이내(1차년도 개발기가: 9개월, 2~5차년도: 각 12개월)
- o 정부지원연구개발비 : '25년 8.4억원 이내(총 정부지원연구개발비 53.2억원 이내)
- o **주관연구개발기관** : 중소·중견 기업
- **기술료 징수여부** : 징수

품목번호	2025-바0		법기술-디 일반-04	지털헬스	산업기	- 1	중분류	I	중분	异耳
개발형태	□ 원천기	술형	☑ 혁신	<u></u> 닌제품형	분류	÷	치료기기 및 진	!단기기	융합비	·이오
혁신도전형		세계최	초		□세계	ᅨ최고	1	V	해당없음	
+ 7 + 5 = 14 =	분야					첨단	바이오			
초격차프로젝트 (해당)	미션			디지털 -	융합 첨년	단바C	이오 초격차	토대 구	1 축	
(-110)	프로젝트	디지털	걸바이오	기반 개인	<u>l</u> 맞춤형	진단	·치료기술 및	l 융복합	할 바이오저	품 개발
연계유형	☐ BI 연	계	☐ IP R	&D연계	□ 디자	인연기	계 🗆 표현	준연계	> 해당	당없음
	□ 경쟁	형과제		복수형괴	제		국가핵심기술	<u> </u>	국제공동	
특성분류	□ 대형	통합형		민간투지	·연계형		서비스형		안전관리	형
नंदित	□ 원스	톱형		유연 컨스	논시엄		챌린지 트랙		초고난도	과제
	□ 탄소	중립		ESG	l		E S	▼ G	□ 해당	당없음
R&D 자율성트랙	~	R&D 7	자율성트	랙(일반)			□ R&D	자율성.	트랙(지정)	
품목명		청	각 이상	증상 개선	을 위한	청기	보조 및 치 .	료기기	개발	
6 70			(TRL : [시	작] 4단계	∜ ∽	[종료] 8단계)		

□ 개념

- o 이명* 및 이명으로 유발되는 증상 치료를 통해 환자의 일상적인 생활 지원을 위한 인공지능 기술적용 디지털의료제품 개발
 - * 이명: 내이 미세혈관의 혈액순환 개선을 통해 이명을 경감시키고 이명에 의해 이차적으로 발생하는 불안, 우울, 불면증 등의 증상을 개선하기 위해 항불안제 및 진정제 등을 사용
- 이명 진단, 모니터링, 관리를 위한 진단보조 및 자가 모니터링 디바이스 개발
- 복합적 이명치료 솔루션 구현 : 통합 인지재활치료, 소리치료, 회피요법 등
- 이명 치료를 위한 소리치료. 회피요법 치료 등
- · 이명에 동반되는 집중력 장애/불안감/우울감 등의 개선을 위한 인지행동치료, 상담 및 정서 관리 컨텐츠 등

※ 핵심 목표 : 이명진단 정확도 (90% 이상). 비교군(또는 치료전) 대비 8주 후 평가척도 (THI 등) 10% 이상 개선

- ㅇ 이명 진단 보조 알고리즘 개발
- 의학적 근거기반 환자 특성 분석(고막 모양 사진, 이명 증상의 자가 설문 등)을 기반으로 진단보조 알고리즘 개발
- ㅇ 이명치료(소리치료) 보조기기 개발
- 이명 소리치료를 위한 음원(이명 소음, 음악 등) 제공 기술개발
- * 타각적, 자각적 이명을 골전도 또는 노이즈 캔슬링 등의 청음을 통한 소리 무감각 재활훈련용 보조기기 등
- 소음발생기 사용성 검증을 통해 최적의 착용감을 반영한 디자인 개발
- 개인 맞춤형 치료를 위한 근거 데이터의 수집과 정보전달 체계 및 방안 설계 및 적용
- ㅇ 인지행동 기반의 이명 치료기술 개발
- 인지행동치료, 회피요법, 소리치료 등의 치료 콘텐츠 제공과 환자 관리를 위한 중재 앱

(디지털치료기기 권장) 개발

- 이명의 습관화를 통해 이명에 대한 불안감, 걱정, 잘못된 인식, 괴로움, 불편감, 불면증, 우울증 등의 감정적 증상 인지를 제어
- 인공지능 기반의 개인맞춤형 치료 프로그램 구성 : 이명 환자 인지행동치료 프로그램 구성, 소리치료 및 음악치료 컨텐츠 구성
- ㅇ 임상시험 실시 및 의료기기 인허가 완료
- 필요시, 기존의 항불안제 및 진정제 등의 약물치료 대체 또는 병용환경 및 효과 검증

연구개발계획서 제출시 다음의 항목의 정량적 목표치 및 상용화 수준 제시 필수

- 임상시험을 통한 치료효과 검증 계획(안) 주요 지표
- 분야별 IF 상위 10% 또는 20% 이내 SCI(e) 논문
- 인허가 및 수가 산정 등 상용화를 위한 구체적 계획(안)과 인허가와 관련된 명확한 성과지표

2. 지원 필요성

□ 지워필요성

- o (정책적 측면) 이명은 불안감, 어지러움, 수면방해 등 삶의 질을 저하를 야기하며 이를 치료하기 위해서는 소리인식 및 인지재활치료를 통한 신경회로망의 재편성이 중요
- (기술적 측면) 중증도 이명환자에 대해 동반증상(불안감, 우울감 등) 완화를 위한 약물 치료가 이루어지고 있으나, 초기 이명환자나 경증 이명환자의 치료를 위한 적절한 대안이 부족하여 이에 대한 새로운 치료수단이 필요
- 의학적 근거 기반 환자 특성 분석 및 개인 맞춤형 치료 알고리즘 개발을 통해 이명 환자 맞춤형 인지행동치료와 소리치료 필요
- (시장적 측면) 인지재활치료효과 증대를 위해 하드웨어와 결합된 다양한 치료방식의 결합 등을 통한 치료효과성이 향상된 새로운 방식의 디지털치료기기가 필요
- o (사회적 측면) 만성 질환인 이명에 효과적인 새로운 치료방법을 제공함으로서, 10명 중 4명 이상이 겪는 이명으로 인한 증상을 개선함으로서 국민 삶의 질 향상에 기여

3. 활용분야

□ 활용분야

- ㅇ 디지털 치료기기 확장
- 개인 맞춤형 치료 기반의 디지털 치료기기와 전자약으로의 발전 및 조합
- 하드웨어와 소프트웨어 콘텐츠가 융합된 인지재활훈련과 지속적인 상담을 통해 지속적인 관리 및 치료 제공

- o 연구개발기간 : 57개월 이내(1차년도 개발기간 : 9개월, 2~5차년도 : 각 12개월)
- ㅇ 정부지원연구개발비 : '25년 8.4억원 이내(총 정부지원연구개발비 53.2억원 이내)
- o 주관연구개발기관 : 중소·중견 기업
- o 기술료 징수여부 : 징수

품목번호	2025-바이		(기술- 일반-0	디지털헬스- 5	산업기	- 1	중분류	I	중분류ㅍ
개발형태	□ 원천기	술형	▼ ₫	혁신제품형	분류	Ť	치료기기 및 진	단기	융합바이오
혁신도전형		세계초	초		□세계	ᅨ최고		V	⁷ 해당없음
大力北立己列F	분야					첨단	바이오		
초격차프로젝트 (해당)	미션			디지털헬	스 기반	기술	확보 및 생	I태계 3	조성
(910)	프로젝트	다중	생체정	정보 기반 디	지털헬스	느 기기	기 및 바이오	빅데이	터 융합 기술개발
연계유형	☐ BI 연	계	☐ IP	R&D연계	□ 디자	인연기	ᅨ □ 표전	 돈연계	☑ 해당없음
	□ 경쟁	형과제		□ 복수형과	제		국가핵심기술	i [국제공동
특성분류	□ 대형성	통합형		□ 민간투자	연계형		서비스형		안전관리형
ਜ ਹਵਾ	□ 원스님	톱형		□ 유연 컨소	<u>-</u> 시엄		챌린지 트랙		초고난도 과제
	□ 탄소	중립		ESG			□ S	▽ G	□ 해당없음
R&D 자율성트랙	V	R&D	자율성	트랙(일반)			□ R&D	자율성.	트랙(지정)
				네트럼 장애					
품목명		웨어	1러블	경두개자극		_			개말
				(IRL : [시2	4J 4난/	1 ∽	[종료] 8단계	II)	

□ 개념

- 자폐스펙트럼 장애 아동 치료를 위한 경두개 자극기기 및 의사소통 능력 향상을 지원하는 화용언어 개선 디지털치료기기 융합 시스템 개발
- (경두개 자극기) 뇌의 특정 영역을 자극하여 자폐아의 전반적인 증상을 개선하는 경두개 자극기기 개발
- (디지털치료기기) 자폐 아동의 음성, 동작 등을 통해 인공지능으로 언어를 해석 하고, 이를 활용한 훈련을 통해 의사소통능력 저하를 개선하는 소프트웨어
- (통합 플랫폼) 치료 과정 통합 관리(병원-치료센터-가정 등) 플랫폼 개발

※ 핵심 목표 : 자폐스펙트럼 장애 아동 음성 데이터 기반 AI 음성인식 정확률 95% 이상

- ㅇ 개인 맞춤형 자극 프로토콜 설정이 가능한 경두개 자극기기(전기,자기 등) 개발
- 치료 안전성 확보를 위해 개인별 신경자극 역치값을 측정하여 출력 세기 설정
- 치료 훈련 결과 피드백을 기반으로 개인 맞춤형 경두개 자극 프로토콜 설정
- 아 자페스펙트럼 장애 아동의 특성을 고려하여 자폐 아동 음성 데이터, 시선 및 동작 인식 인터렉션 등을 활용한 화용언어 개선 디지털치료기기 개발
- 자폐아동 언어 데이터 등을 활용한 인공지능 음성인식 기술 개발
- 단어 선정 및 발음 유창성 등을 기반으로 한 의사소통 중증도 평가 기술 개발
- 자폐스펙트럼 장애 아동 의사소통 능력(화용언어) 향상 디지털치료기기 개발
- 뇌가소성 향상을 위해 경두개 자극기로 안전하고 유효한 뇌신경 자극을 주고, 동시에 디지털 치료 콘텐츠로 지속적인 훈련을 제공하는 융합 시스템 개발
 - 뇌 활성화 데이터 및 디지털 훈련 결과 피드백 기반 치료 효과 분석 기술 개발

- 치료 과정 통합 관리(병원+가정+치료 센터 등)를 위한 클라우드 플랫폼 구축
- 자폐스펙트럼 장애 아동 대상 융합 시스템 안전성과 유효성 검증
- ㅇ 안전성 유효성 검증을 위한 임상시험 및 인허가 완료

- 자폐스펙트럼 장애 아동 음성 빅데이터 기반의 AI 음성인식률 정확도 (> 95%) 등 주요 지표
- 의사소통 능력 향상은 의학적으로 검증된 표준화된 평가도구에서 통계적으로 유의미한 결과로 제시
- 정량적 목표치에 대해 공인기관 시험성적서 또는 이를 대체할 신뢰할 수 있는 평가 방법 제시
- 의료기기 시험 검사 기관의 의료기기 안전성(전기, 전자파 등) 및 성능 시험 성적서 확보
- 개발 제품의 유효성 평가를 위한 임상 시험 및 인허가 등 상용화 계획

2. 지원 필요성

□ 지원필요성

- ㅇ (정책적 측면) 적극 치료 수요 증가 및 의료 수급 불균형 해소
- 내원 및 센터 방문의 대면 치료를 일부 대체하여 시간, 장소, 횟수 제약 없이 비대면 치료 가능
- o (기술적 측면) 혁신적인 융합 치료 방법을 활용한 선도적 의료기기 기술에 대한 임상적 안전성과 유효성 확인을 통한 검증된 치료 기술의 확보
- 디지털 플랫폼을 통해 훈련 진행 상황과 반응을 실시간으로 수집하고 분석함으로써, 맞춤형 치료가 가능하고 향후 가정용으로 치료 접근성을 높일 수 있음
- o (시장적 측면) 자폐스팩트럼 장애 아동에 대한 조기 치료를 통해 생애 주기 동안 발생하는 치료비용 감소로 사회적 비용을 절감
- (사회적 측면) 환자 중심의 치료에서 환자 주변에 대한 전반적인 치료 환경을 개선하여 새로운 의료체계 도입
- 중점 커버리지 군에 대한 조기 개입으로 중증 자폐로의 증상 악화 사전 방지
- 자폐 아동과 그 가족이 치료에 소요하는 물리적인 시간 및 비용을 절감하여 환자와 가족의 삶의 질 개선
- 자폐, 우울증, ADHD와 지속적인 치료가 필요하지만 의료시설이 부족한 지역의 의료 불균형 최소화

3. 활용분야

□ 활용분야

- o 자폐스펙트럼 장애뿐 아니라 발달지연, ADHD 등 전 생애에서 가정과 사회의 돌봄이 필요한 뇌질환 관련 환자에게 최소한의 인간적인 소통과 활동을 보장
- o 현재까지 특별한 치료법이 없기에 융합형 디지털 치료 기술을 개발하여 편리성, 안전성, 유효성(임상 연구)을 확보함으로써 시장 선점

- **연구개발기간 :** 57개월 이내(1차년도 개발기간 : 9개월, 2~5차년도 : 각 12개월)
- o 정부지원연구개발비: '25년 8.2억원 이내(총 정부지원연구개발비 52억원 이내)
- o 주관연구개발기관 : 중소·중견 기업
- 기술료 징수여부 : 징수

품목번호		오산입 -품목-		디지털헬스 6	산업기	- 1	중분류	I	중분류ㅍ
개발형태	□ 원천기	술형	✓ ₫	혁신제품형	분류	÷	치료기기 및 진	단기	융합바이오
혁신도전형		세계초	초		□세계	ᅨ최고	1	V	· 해당없음
ᅕᄸᄟᅲᆯᆐᇀ	분야					첨단	바이오		
초격차프로젝트 (해당)	미션			디지털헬	스 기반	기술	화보 및 생	!태계 2	조성
(MO)	프로젝트	다중	생체정	성보 기반 디	지털헬_	느 기	기 및 바이오	빅데이	터 융합 기술개발
연계유형	☐ BI 연	계	□ ІР	R&D연계	□ 디자	인연:	계 🗆 표준	돈연계	☑ 해당없음
	□ 경쟁	형과제		□ 복수형과	제		국가핵심기술	Ī	국제공동
특성분류	□ 대형	통합형		□ 민간투자	연계형		서비스형		안전관리형
न्टिंग	□ 원스:	톱형		□ 유연 컨쇠	-시엄		챌린지 트랙		초고난도 과제
	□ 탄소	중립		ESG			E S	▼ G	□ 해당없음
R&D 자율성트랙	~	R&D	자율성.	트랙(일반)			R&D	자율성.	트랙(지정)
품목명			·중감기	: 자극 기반	뇌파 연	동 인	지기능 개선	기기 기	개발
6 70				(TRL : [시 ²	탁] 5단계	∜ ∽	[종료] 8단겨)	

□ 개념

- o 다중감각(시각, 청각(음파/음압), 촉각 등) 자극을 통한 뇌신경 활성화 작용을 유도하여 인지기능 저하 또는 정신건강을 개선하는 다중감각 자극 기반 디지털 의료기기 개발
- 실시간 뇌파 측정을 통한 뇌 자극의 효율화 및 개인화 피드백 기술 개발

※ 핵심 목표 : 다중자극 기반 뇌 인지기능 장애 개선/지연 10% 이상

- 이 인지기능 저하 개선에 적용 가능한 2가지 이상의 다중자극을 통한 뇌신경 활성화 작용을 유도하여 인지기능 장애를 개선하는 다중감각 자극 기기 개발
 - * 전기/자기 자극 방식 및 침습적 방법은 제외함
- 실시간 분석을 통하여 인지기능 장애 개선 효율성을 높일 수 있는 다중 생체정보 측정 및 피드백 기술 개발
- 고령자 등의 사용성을 고려한 최소 신체 접촉 비침습 다중자극 기술개발
- 사용중 생체정보 모니터링 및 측정데이터 분석 기술개발
- 사용자 맞춤형 피드백 제공을 위한 알고리즘 및 어플리케이션 개발
- 이 뇌 자극 이후 뇌파 측정 및 분석을 통해 치료 효과를 정량화하고 다음 치료 효과가 극대화되도록 자극을 최적화하는 기술 개발
- 뇌 활성화 실시간 모니터링을 통한 자극의 프로파일 측정/분석 및 피드백 기술개발
- 인지기능 개선여부 측정을 위한 인지기능 분석 기술개발
- ㅇ 사용성을 높이기 위한 사용 패턴 분석 및 관리 시스템 개발

- 사용 현황 및 인지기능 개선 등 개인 건강정보를 제공할 수 있는 모바일 어플리 케이션 개발
- ㅇ 안전성 유효성 검증을 위한 임상시험 및 인허가 완료
- 인지기능 장애 비교 평가를 위한 MMSE, CDR-SB 등 평가 수행

- 허가용 임상시험 피시험자 산출 근거에 따른 임상 시험 계획 제시
- 인지기능 개선기기의 주요 성능 지표 및 평가방법 제시

2. 지원 필요성

□ 지원필요성

- (정책적 측면) 급속한 고령화로 인해 인지기능장애를 겪는 환자들이 늘고 있으며 이로 인한 사회적지출 규모가 빠르게 늘고 있음
- o (기술적 측면) 의약품 등과 병용 가능한 의료기기를 개발하여 생물학적 부작용 가능성을 개선할 수 있는 안전한 접근방법 개발필요
- (시장적 측면) 인지기능 저하를 개선하기 위해 구매 능력이 있는 선진국들을 중심으로 전세계적인 고령화를 겪고 있어서 인지기능 디지털 헬스케어 시장은 다른 분야에비해 더 많은 주목을 받고 있음

3. 활용분야

□ 활용분야

- ㅇ 최신의 비침습성 인지기능개선 원천기술 확보
- ㅇ 인지개선을 위한 디지털 헬스케어부터 치료기기 영역까지 확장
- ㅇ 관련 최신 기술 확보를 기반으로 한 추가적인 신규 기술 개발

- **연구개발기간** : 45개월 이내(1차년도 개발기간 : 9개월, 2~4차년도 : 각 12개월)
- o 정부지원연구개발비 : '25년 8.4억원 이내(총 정부지원연구개발비 42억원 이내)
- **주관연구개발기관** : 중소·중견기업
- 기술료 징수여부 : 징수

품목번호		오산업기술- -품목-일반-(산업기술	5	중분류 I	중분류ㅍ
개발형태	□ 원천기	술형 ☑ 🧸	혁신제품형	분류	기능	등복원/보조 및 복지기기	치료기기 및 진단기기
혁신도전형		세계최초		□세계최	의고	V	· 해당없음
+ 34 71 -	분야			첨	단바이오	2	
초격차프로젝트 (해당)	미션		디지털헬.	스 기반 기	기술 확5	보 및 생태계 3	조성
(-110)	프로젝트	다중 생체정	정보 기반 디	지털헬스	기기 및	바이오빅데0	터 융합 기술개발
연계유형	☐ BI 연	계 🗌 IP	R&D연계	□ 디자인	연계	□ 표준연계	☑ 해당없음
	□ 경쟁	형과제	□ 복수형과	제 [국가학	핵심기술 [국제공동
특성분류	□ 대형성	통합형	□ 민간투자	연계형 [_ 서비스	스형 [안전관리형
〒 0 正 π	□ 원스님	톱형	□ 유연 컨소	:시엄 [_ 챌린지	「트랙 □	초고난도 과제
	□ 탄소	중립	ESG		□ E	□S ▼G	□ 해당없음
R&D 자율성트랙	~	R&D 자율성	트랙(일반)			R&D 자율성.	트랙(지정)
품목명		황반변성	성 예방 및 관	리를 위한	망막 병	병변 치료기기 7	H발
			(TRL : [시 ^조	t] 4단계	~ [종료	리 8단계)	

□ 개념

- o 건성 황반변성 관련 주요 질환인 드루젠*을 안저 이미징과 광생물조절 기술을 적용하여 단일 제품에서 진단·모니터링 및 치료할 수 있는 융합형 디지털 헬스케어 제품 개발
 - * 드루젠 : 망막 아래 축적되는 작고 둥근 황백색 병변으로, 자각증상이 없으면서 장기적으로 건성 황반변성 질환으로 발전되기 때문에 정기적인 추적 관찰이 중요

※ 핵심 목표 : 드루젠 검출 정확도 90% 이상, 드루젠 감소율 15% 이상

□ 개발내용

- 항반변성의 원인인 망막 노폐물에 의한 드루젠을 안저 영상을 통해 분석하고, 진행 정도를 진단하는 알고리즘을 개발하여 저출력 광원 조사 기술을 통해 드루젠을 완화하는 융합 솔루션을 제공하는 디지털 헬스케어 제품을 개발
- 드루젠을 측정하고 분석하기 위한 광학 측정 기술 및 안저 영상 기기 개발
- 안저 영상 기반 드루젠 분석 및 진단·모니터링할 수 있는 AI 기반 분석 알고리즘 개발
- 망막의 드루젠 완화를 위한 비침습적 광생물조절(photobiomodulation) 기기 개발
- 3종 이상 다파장 광원 모듈 및 자동 안구 추적 광원 위치 조정 기술 개발
- 망막 드루젠 모니터링 및 다파장 광원의 통합 소형화 기술 개발
- 드루젠 진단·모니터링 및 치료 등 안 질환 건강 관리를 위한 전용 소프트웨어 개발
- ㅇ 안전성 유효성 검증을 위한 임상시험 및 인허가 완료

연구개발계획서 제출시 다음의 항목의 정량적 목표치 및 상용화 수준 제시 필수

- 안저 망막 영상(FOV: 45도 이상), 광생물조절기(광 출력 안정도: 95% 이상) 등

2. 지원 필요성

□ 지원필요성

- (정책적 측면) 고령사회에 접어들면서 삶의 질에 영향을 미치는 질환들에 대한 국가적인 관리의 필요성이 대두됨에 따라 관리사업이 진행되고 있으나 지역적 의료 체계 및 개인 환경에 따른 관리의 격차 발생되고 있기 때문에 디지털 헬스 케어 기술의 고도화는 국가 경쟁력 강화에 필수적임
- o (기술적 측면) 안질환에 대한 측정기술, 질환 개선 기술, 인공지능 등의 기술 융합을 통해 첨단기술의 발전 가속화 및 기술 상호 발전에 이바지함
- (시장적 측면) 안질환에 대한 진단/치료 부담 증가 추세에 있으며, 관련 제품 시장은 2017년 675.86백만 달러에서 2025년 1191.27백만달러로 CAGR 7.85%의 성장할 것으로 전망되고 있음
- (사회적 측면) 드루젠은 시각 손실을 초래할 수 있는 주요 질환으로 국내에서도 환자가 늘어나는 추세로 의료비 및 사회적 부담이 증가하고 있기 때문에 이에 대응하기 위한 기술 개발 필요

3. 활용분야

□ 활용분야

- 개인 안구에 대한 지속적인 모니터링을 통한 안질환에 대한 예방과 개인 맞춤 치료를 수립할 수 있는 환경 구축
- o 고령화 사회 도래에 따라 노인의 시각 건강을 모니터링하여 조기 치료 촉진에 따른 돌봄 플랫폼에 적용

4. 지원기간/예산/추진체계

○ **연구개발기간** : 57개월 이내(1차년도 개발기간 : 9개월, 2~5차년도 : 각 12개월)

ㅇ 정부지원연구개발비 : '25년 9.0억원 이내(총 정부지원연구개발비 57억원 이내)

o 주관연구개발기관 : 중소·중견 기업

o 기술료 징수여부 : 징수

품목번호	2025-바0		업기술-디 일반-08	지털헬스	산업기	술	중분류 I		중분류ㅍ
개발형태	□ 원천기	술형	☑ 혁신	<u>·</u> 제품형	분류	}	기능복원/보조 복지기기	및	치료기기 및 진단기기
혁신도전형		세계초	초		□세계	최고		~	해당없음
+ 74 - 77 -	분야					첨단 ^L	이오		
 초격차프로젝트 (해당)	미션			디지털헬	스 기반	기술	확보 및 생태	패계 2	5성
(-110)	프로젝트	다중	생체정보	L 기반 디	지털헬스	느 기기	및 바이오	빅데이	터 융합 기술개발
연계유형	☐ BI 연	계	☐ IP R8	λD연계	□ 디자	인연계	┃ □ 표준	연계	☑ 해당없음
	□ 경쟁	형과제		복수형과	·제		국가핵심기술 -		국제공동
특성분류	□ 대형	통합형		민간투자	·연계형	□ Y	네비스형		안전관리형
नंदित	□ 원스	톱형		유연 컨스	스시엄	<u></u> 철	밸린지 트랙		호고난도 과제
	□ 탄소	중립		ESG		E E	S	□G	☑ 해당없음
R&D 자율성트랙	~	R&D	자율성트	랙(일반)			□ R&D ス	율성년	트랙(지정)
품목명	림프부	종 완화	화 및 관리	의를 위한	다중 지	h극 기	반 레이저-초	음파	치료기기 개발
			(TRL : [시 ²	탁] 4단계	~	[종료] 8단계)		

□ 개념

- 림프부종* 완화 및 체계적인 관리를 위한 환자맞춤형 다중 자극 기반 저출력레이저-초음파 융합 치료기기 개발
 - * 림프순환계의 이상으로 인해 체내 조직에 과도한 체액이 축적되는 질환으로, 주로 수술후 림프절절제나 방사선 치료를 받은 암환자에게 발생
- 환자 맞춤형으로 착용 가능한 웨어러블형 또는 소형 자극 기기 개발
- 림프부종 변화를 모니터링할 수 있는 생체복합신호 데이터 측정·분석 기술 개발

※ 핵심 목표: 다중 자극 기반 림프 부종 완화율 80% 이상

- ㅇ 다중 자극 기반 웨어러블 자극 및 치료 기술 개발
- 국소부위 또는 넓은 면적의 환부에 대응하여 저출력레이저 및 초음파를 조사할 수 있는 대면적 자극 및 치료기기 개발
- 림프부종 완화 에너지 조사 패턴 및 제어 기술 개발
- 치료 시 자세 고정이 필요 없는, 피부에 밀착되면서, 가벼운 착용감과 사용 편의성을 제공하는 착용 가능한 형태(밴드, 벨트 등)의 기기 개발
- ㅇ 림프부종 모니터링 기술 개발
- 생체신호 및 압력, 영상 등을 이용한 데이터 수집 및 분석을 통해 림프부종 변화 측정 및 모니터링 기술 개발
- ㅇ 안전성 유효성 검증을 위한 임상시험 및 인허가 완료
- 임상시험을 통한 다중 자극 기반 림프부종 완화 최적 조건 확립 및 검증

- ㅇ 림프부종 완화 자극 및 치료기기의 주요 성능 지표 및 평가방법 제시
- (레이저) 조사 시간, 주파수, 출력, 반복률 등, (초음파) 에너지 강도, 깊이, 주파수, 시간 등

2. 지원 필요성

□ 지원필요성

- (정책적 측면) 보건복지부는 2023년 1월 림프부종 환자의 저출력 레이저 치료를 신의료기술로 인정, 림프 부종 완화와 치료 및 관리를 위한 디지털 치료기 개발은 만성질환 관리와 의료비 절감이라는 정부의 보건 정책 목표와 일치
- (기술적 측면) 림프부종 치료를 위한 웨어러블 저출력 레이저(세포대사 활성화 및 조직 재생 촉진하여 림프액의 흐름을 개선) 및 초음파(미세 순환을 개선하고 림프 배액을 도움) 기술은 비침습적이며 안전한 치료 방법으로 기존의 복잡한 치료법을 대체하거나 보완할 수 있고 실시간 상태모니터링을 통해 환자 친화적인 맞춤형 치료 제공 가능
- (시장적 측면) 전 세계 림프부종 치료 시장은 2021년 7억 8,653만 달러에서 2030년 17억 3,536만 달러로 연평균 9.5%으로 꾸준히 성장할 것으로 예상되며, 특히 고령화 시대 개인 건강 관리 수요 증가가 예상되는 점을 고려할 때 웨어 러블 디지털 치료기의 상용화를 통해 글로벌 디지털 헬스케어 시장에서의 경쟁력을 확보 필요
- (사회적 측면) 림프 부종 환자들에게 효과적이고 편리한 치료 솔루션을 제공 함으로써 삶의 질 향상과 상태진단 피드백을 통해 환자의 자가 관리 능력을 강화 및 의료 접근성이 낮은 지역에서도 효과적인 치료 가능

3. 활용분야

□ 활용분야

- 림프부종 치료 및 관리에 효과적으로 사용되며, 유방암 수술 후 환자의 부종 완화와 통증 경감, 치료, 림프 순환 개선 및 체액 정체 문제를 해결, 외상 후 부종이나 관절염 등 다양한 재활 의료에 활용 가능
- 웨어러블 저출력레이저/초음파 융복합 디지털치료기기를 통한 림프부종 완화와 치료 및 진단·모니터링에 활용

4. 지원기간/예산/추진체계

○ **연구개발기간** : 57개월 이내(1차년도 개발기간 : 9개월, 2~5차년도 : 각 12개월)

o 정부지원연구개발비: '25년 8.2억원 이내(총 정부지원연구개발비 52억원 이내)

o 주관연구개발기관 : 중소·중견 기업

o 기술료 징수여부 : 징수

품목번호	2025-바0	오산업 -품목-		·디지털헬스)9	산업기		중분류	·I	중분류ㅍ
개발형태	□ 원천기	술형	▼ 4	혁신제품형	분류	Ť	치료기기 및	진단기기	융합바이오
혁신도전형		세계최	초		□ 세계	ᅨ최고	<u>1</u>	V	· 해당없음
+ 7 + 5 = 14 =	분야					첨단	바이오		
초격차프로젝트 (해당)	미션			디지털&	당합 첨단	라바이	오 초격차	토대 구	축
(*110)	프로젝트	디지털!	바이오	기반 개인 맞	·춤형 진단치료기술 및 융복합				오제품 개발
연계유형	☐ BI 연	계	☐ IP	R&D연계	□ 디자	인연:	계 🗆 표	준연계	☑ 해당없음
	□ 경쟁	형과제		□ 복수형과	제		국가핵심기·	술	국제공동
특성분류	□ 대형	통합형		□ 민간투자	연계형		서비스형		안전관리형
नंदित	□ 원스	톱형		□ 유연 컨스	스시엄		챌린지 트락		초고난도 과제
	□ 탄소	중립		ESG			E S	▽ G	□ 해당없음
R&D 자율성트랙	~	R&D 7	다율성	트랙(일반)			□ R&D	자율성.	트랙(지정)
	인공지	능 피부	. 진단	및 최적 치료	사양 제	∥공 기	' 능 탑재 고 ⁼	주파-초음	마 융 복 합 피부
품목명					치료기	기기	발		
				(TRL : [시 ²	탁] 4단기	∜ ∽	[종료] 8단	계)	

□ 개념

- o 2D/3D 피부 진단 및 피드백을 통해 환자 피부 맞춤형 최적화된 치료 사양을 제공하는 고주파(RF)/초음파 융복합 피부 치료기기 개발
- 다양한 피부 진단 지표(예, 피부 임피던스, 진피층 분포, 탄력도, 주름, 수분 등)를 측정할 수 있는 모듈 형태의 디바이스 기술개발
- 피부 진단 데이터를 토대로 최적 고주파/초음파 치료 사양을 도출하는 인공지능 치료 계획 시스템 개발
- 인공지능 치료 계획 시스템과 연계되어 고주파/초음파 융복합 치료기기 개발을 통해 주름 개선(타이트닝, 리프팅) 등 개인별 피부에 최적화된 치료 사양을 제공하는 피부 치료기기 개발
- * 피부상태 진단기기와 치료기기는 상호 결합되거나 유기적 연동이 가능한 형태로 개발

※ 핵심 목표 : 인공지능 피부 진단 정확도 80% 이상 치료 계획에 맞추어 2종 에너지원(초음파/고주파) 조사 정확도 90% 이상

- ㅇ 피부 진단 지표 측정 및 인공지능 피부치료 계획 시스템 개발
- 피부 진단 지표(예, 피부 임피던스, 진피층 분포, 탄력 등)를 측정할 수 있는, 고주파/초음파 융복합 치료기기에 모듈/프로브 형태로 장착 가능한 디바이스 기술
- 멀티모달 데이터 기반 2D 및 3D 피부상태 측정기술
- 측정된 피부 진단 데이터의 피드백을 받아 환자 맞춤형 최적화된 고주파/초음파 치료 사양을 도출하는 인공지능 피부치료 계획 시스템 기술개발

- ㅇ 인공지능 피부치료 계획 시스템 연동 융복합 피부 치료기기 기술개발
- 인공지능 피부치료 계획 시스템과 연계되어 최적화된 치료 사양 제공이 가능한 고주파/초음파 융복합 피부 치료기기 개발
- * (고주파) 주파수, 출력, 극성 특성 등
- * (초음파) 에너지 강도, 깊이 시술 샷, 주파수 등
- 피부 진단 결과에 따른 치료 위치 가이드 기술 개발
- (기술 통합 및 인허가) 인공지능 피부치료 계획 시스템 연계 고주파/초음파 융합 피부 치료기기 시제품 개발
- 인공지능 피부치료 계획 시스템 연계 고주파/초음파 융합 피부 치료기기 개발 제품의 의료기기 규격 기준에 적합한 시제품 제작
- 피부 치료기기 시제품의 안전성·성능 시험을 통한 신뢰성 확보 및 인허가 완료

- 기존 기술(예, M社의 단일 에너지원(초음파) 영상 기반 치료계획과 연계된 초음파 피부 치료기기) 대비 향상된 사양(최적화 가능 사양 개수 등)을 제시
- 의료기기 시험검사 기관의 의료기기 안전성(전기, 전자파, GLP 등)·성능 시험 성적서 확보
- 인공지능 피부 진단 정확도(> 80%), 치료 계획에 맞춘 초음파/고주파 조사 정확도(> 90%) 등 주요 지표
- 임상시험, 인허가 등 제품화, 상용화 계획

2. 지원 필요성

□ 지원필요성

- o (정책적 측면) 주요 수출 품목으로 부상하는 고주파, 초음파 피부 치료기기와 피부 상태 측정 센서, 인공지능 등 디지털헬스기술 융복합을 통한 수출 확대 지원
- (기술적 측면) 피부 치료기기 산업, 시장 성장을 견인하기 위해 인공지능 빅데이터 등 디지털 헬스케어 기술과의 융복합 지원
- (시장적 측면) 레이저·고주파 등 피부 의료기기 수출액은 2023년 2.64억 달러로 2022년 대비 49.6% 증가하였고, 디지털헬스 기술 융복합을 통한 고부가가치 제품 개발 및 수출이 필요
- o (사회적 측면) 고령사회 진입 및 고령자 에스테틱 수요 증가에 맞추어 최적화된 주름 개선 치료를 통해 고령자 삶의 질 개선 및 만족도 향상

3. 활용분야

□ 활용분야

- o 피부 상태 진단, 측정, 피드백, 인공지능 피부치료 계획 시스템 및 융복합 치료기술을 통해 안전하고 효과적인 고부가가치 주름 개선 치료기기 개발, 제품화 및 수출 확대
- ㅇ 고주파, 초음파 홈 스킨케어 기기 및 소프트웨어 의료기기(치료 계획 소프트웨어)로의 확장 가능

- o 연구개발기간 : 57개월 이내(1차년도 개발기간 : 9개월, 2~5차년도 : 각 12개월)
- o 정부지워연구개발비: '25년 8.2억원 이내(총 정부지원연구개발비 52억원 이내)
- o 주관연구개발기관 : 중소·중견 기업
- **기술료 징수여부** : 징수

품목번호			법기술-I 일반-10	기지털헬스)	산업기	-	중분류	I	중분류ㅍ	
개발형태	□ 원천기	술형	▼ 호	∮신제품 형	분류	f	치료기기 및 전	민단기기	의료정보 및 시스템	
혁신도전형		세계초	초		□ 세계	ᅨ최고	<u>1</u>	V	해당없음	
+ 7 + = - 11 =	분야					첨단	바이오			
 초격차프로젝트 (해당)	미션			디지털헬	스 기반	기술	을 확보 및 성	생태계 3	조성	
(-110)	프로젝트	다중	생체정	보 기반 디	지털헬스	느 기	기 및 바이의	2빅데0	터 융합 기술개발	발
연계유형	☐ BI 연	계	☐ IP	R&D연계	□ 디자	인연:	계 <u></u> 표	준연계	☑ 해당없음	
	□ 경쟁	형과제		□ 복수형과	·제		국가핵심기	글 [국제공동	
특성분류	□ 대형	통합형		□ 민간투자	연계형		서비스형		안전관리형	
〒 0 正市	□ 원스	톱형		□ 유연 컨소	스시엄		챌린지 트랙		초고난도 과제	
	□ 탄소	중립		ESG			E S	▼ G	□ 해당없음	
R&D 자율성트랙	~	R&D	자율성!	트랙(일반)			□ R&D	자율성	트랙(지정)	
프모며							모니터링 정 열묘 사스템			
품목명							경보 시스템 [종료] 8단 ⁷			
	=									

□ 개념

- 입원환자의 생체신호를 실시간으로 모니터링하고, 인공지능 기반 분석으로 임상 악화를 조기에 예측하여, 의료진이 신속히 대응하고 응급 상황을 예방할 수 있는 웨어러블(패치 등) 조기 경보 시스템 개발
- 병원 내 입원환자에게 적용하며, 생체신호를 실시간으로 수집해 의료진이 즉각적으로 환자 상태 변화를 모니터링하고 대응할 수 있도록 지원
- 병원 내 디지털 헬스케어 플랫폼과 연동해 EMR과 통합 관리가 가능하며, 병원 외고위험군이나 만성질환자를 대상으로 원격 모니터링을 통한 상태 악화 방지와 신속 대응을 제공

※ 핵심 목표 : 5종 이상의 생체정보 실시간 수집을 통한 임상 악화 감지(급성 상태 악화, 쇼크 등) AUC > 0.90

- ㅇ 시스템 주요 구성요소 및 기술
- 패치형 웨어러블 디바이스 : 생체신호 실시간 측정, 실시간 생체데이터 서버 전송
- EMR 연동 : 측정 결과 기존 정보 연동, 예측 데이터를 자동 기록
- AI 분석 시스템 : 통합 신호 분석, 환자별 급성 상태 맞춤 예측과 실시간 최적화
- 의료진 대시보드 : 환자 상태와 경고 실시간 모니터링. 중증 상태 시 즉각 경고 제공
- ㅇ 실시간 다중 생체신호 기반 조기 경보 시스템 개발
- 심전도, 호흡, 체온, 산소포화도, 혈압, 가속도 등 생체신호를 실시간으로 수집하고, AI 분석으로 중증 이벤트를 예측하여 의료진에게 즉각적 경보 제공
- 환자의 개별 상태를 학습해 맞춤형 예측을 수행하며, 멀티파라미터 통합 분석을 통해 의료진이 환자 안전을 효과적으로 관리할 수 있도록 지원

- ㅇ 병원 내 디지털 헬스케어 플랫폼 연동
- 병원 내 디지털 헬스케어 플랫폼과 연동하여, 생체신호와 예측 데이터를 통합 관리 하고 EMR과 자동 연동해 환자 상태를 체계적으로 기록 및 관리
- 중앙화된 플랫폼에서 여러 환자의 상태를 실시간으로 모니터링하고 대응이 가능 하게 하여 디지털 헬스케어 기반의 진료환경을 최적화
- 0 임상 환경에서의 실증 및 시스템 최적화
- 중환자실 등을 중심으로 조기 경보 시스템의 효과와 신뢰성을 실증하고, 실증 결과를 통해 실제 임상 환경에서 최적화된 성능 구현
- 실시간 데이터 업데이트와 AI 모델 최적화를 통해 민감하게 반응하는 안정적 조기 경보 시스템 제공
- ㅇ 의료기기 임상시험 및 인허가 완료
- 의료기기 인증 절차를 통해 안전성과 신뢰성을 입증하여 상용화에 필요한 기반을 마련

- 개발 시스템 성능 및 AI 모델 성능 개발 제품의 임상테스트를 이용한 유효성 평가 실시
- 임상시험 및 인허가 등 상용화 계획
- 정량적 목표치에 대해 공인시험성적 또는 이를 대체할 신뢰할 수 있는 평가방법을 제시

2. 지원 필요성

□ 지원필요성

- o (정책적 측면) 고령화와 만성질환 증가로 인해 장기 입원과 응급 상황 발생빈도가 높아지고 있어 AI 기반의 조기 경보 시스템 구축을 통한 신속대응 체계 필요
- o (기술적 측면) 실시간 생체신호 모니터링과 AI 기반 분석을 통합한 조기 경보 시스템의 임상현장 본격 도입을 위해 높은 기술적 난이도와 신뢰성이 요구됨
 - * 국내 연구에 따르면, 실시간 생체신호 모니터링을 통한 조기 경보 시스템이 도입되었을 때 응급 상황 발생률이 30% 이상 감소할 수 있는 것으로 기대
- ㅇ (시장적 측면) 입원환자 임상 악화 예측 시스템은 국내 병원 내 중환자실과 일반 병동뿐 아니라 만성질환 관리 및 응급 의료 분야에서 높은 도입 가능성을 가진 혁신적 솔루션
- ㅇ (사회적 측면) 응급 상황을 사전에 감지하여 의료진이 신속히 대응함으로써 발생 하는 효과로, 환자와 가족에게는 안도감을 제공하고, 의료진의 업무 효율성을 높여 환자 관리에 집중할 수 있는 환경을 조성

3. 활용분야

□ 활용분야

- ㅇ 중환자실(ICU), 응급실 : 환자의 급성 상태 변화를 빠르게 감지하고 즉각적인 치료 결정을 지원하고 생존율 향상에 기여
- ㅇ 일반 병동 : 환자의 상태를 모니터링하여 급성 악화를 조기에 경고하고 예방
- ㅇ 재활 병원 : 환자의 상태를 실시간으로 파악해 재활 과정에서의 응급 상황을 방지
- ㅇ 노인 요양 병원 및 장기 요양시설 : 응급 상황을 조기에 발견하고 대응
- ㅇ 원격 모니터링 및 재택 치료 : 원격 모니터링으로 실시간으로 응급 상황을 대비

- o **연구개발기간** : 57개월 이내(1차년도 개발기간 : 9개월, 2~5차년도 : 각 12개월)
- o 정부지원연구개발비: '25년 8.4억원 이내(총 정부지원연구개발비 53.2억원 이내)
- o 주관연구개발기관 : 중소·중견 기업
- 기술료 징수여부 : 징수

품목번호	2025-바0	ll오산업기 -품목-일t	술-디지털헬스 반-11	산업기술	중분류 I	중분류ㅍ				
개발형태	□ 원천기	술형	✔ 혁신제품형	분류	치료기기 및 진단기	기기 의료정보 및 시스	템			
혁신도전형		세계최초		□ 세계최	고	☑ 해당없음				
+ 7 + 5 - 7 11 -	분야			첨딘	· - - - -					
초격차프로젝트 (해당)	미션		디지털원	융합 첨단바이오 초격차 토대 구축						
(-110)	프로젝트	디지털바이	기오기반 개인 맞춰	춤형 진단치 <u>.</u>	료기술 및 융복합	바이오제품 개발				
연계유형	☐ BI 연	계 [년계 □ 해당없음	2						
	□ 경쟁	BI 연계 □ IP R&D연계 □ 디자인연계 ☑ 표준연계 □ 해당없음 경쟁형과제 □ 복수형과제 □ 국가핵심기술 □ 국제공동								
특성분류	□ 대형	통합형	□ 민간투자	연계형 🗀	서비스형	□ 안전관리형				
नंदित	□ 원스	톱형	□ 유연 컨소	스시엄	챌린지 트랙	□ 초고난도 과제				
	□ 탄소	중립	ESG		E S	☑ G □ 해당없음	<u>)</u>			
R&D 자율성트랙	~	R&D 자율	울성트랙(일반)		☐ R&D 자원	율성트랙(지정)				
품목명		디지털	헬스케어용 소형	저전력 온	디바이스 AI 핵심	심기술 개발				
			(TRL : [시즈	사] <mark>4단계 ~</mark>	`[종료] 8단계)					

□ 개념

- o 소형 디지털의료제품에 인공지능 기술을 적용하기 위해, 범용적으로 활용 가능한 소형·저전력 온디바이스 AI모듈을 개발하고 이를 실제 디지털의료기기 제품에 적용하여 검증
- 소형 디지털의료제품에 적용 가능한 소형화, 저전력화 온디바이스 AI모듈(HW) 및 인공지능 알고리즘 경량화(SW) 기술 개발
- 개발된 온디바이스 AI모듈과 위험상황 예측 기능이 내장되어 사용자(노약자, 급만성 질환자 등) 위험상황 예측이 가능한 가정용 디지털의료제품* 개발(2종 이상)
- * 심혈관질환 또는 급만성 호흡기 질환 재택관리 디지털의료제품(1종), 재택환자용 호흡치료기(1종) 포함 필수

※ 핵심 목표 : 소형화, 저전력화 온디바이스 AI 모듈을 적용한 디지털의료제품 2종

- 디지털의료제품용 비의료 영상 및 생체신호 등 처리가 가능한 소형, 저전력 AI 가속기 기반의 온디바이스 AI 핵심 기술개발
- 다양한 소형 디지털의료제품에 탑재가 가능한 AI 가속기 모듈* 개발
- * 소형 보드에 NPU, FPGA 등이 장착된 형태로서, 다양한 인터페이스와의 연결성 및 대상기기 확장성을 고려
- 멀티모달 데이터(생체신호, 영상 등)를 이용한 정보처리 및 예측 AI 알고리즘 개발
- 온디바이스 AI 적용을 위한 AI 알고리즘 경량화(양자화) 기술 개발
- 다양한 디지털의료제품 온디바이스 AI 적용 확산을 위한 통합개발환경 및 온디바이스 AI모듈에 포팅 기술 개발
- 개발된 온디바이스 AI 모듈을 적용한 디지털 의료제품 개발(2종 이상)
- 위험상황 예측관리가 가능한 재택치료용 심혈관질환 또는 급만성 호흡기 질환 디지털 의료제품 개발(1종)
- 위험상황 예측이 가능한 재택환자용 호흡치료기 개발(1종)

ㅇ 디지털 헬스케어 분야 온디바이스 AI 기술 및 재택치료 등을 고려한 표준화활동 수행(예, IEC SyC AAL, ISO TC215 등)

연구개발계획서 제출시 다음의 항목의 정량적 목표치 및 상용화 수준 제시 필수

- 개발 대상 디지털의료제품의 성능 및 온디바이스 AI 모듈 사양
- 대상 표준의 종류 및 제반 상황을 고려한 표준화 활동 계획 및 목표

2. 지원 필요성

□ 지원필요성

- o (정책적 측면) 디지털의료제품에 AI 기술이 적용되어 상용화되고 있으나 네트워크를 통한 지속적인 개인 생체정보의 지속적인 노출 위험, 온라인상 연결성 등 문제가 지속적으로 대두
- (기술적 측면) 네트워크 없이 AI 기능구현이 가능한 온디바이스 AI 기술의 디지털 헬스케어 분야 적용은 아직 초기 상태이므로 범용적으로 활용 가능한 선도 기술 확보를 위해 정부의 선제적 연구개발 투자가 필수적임
- (시장적 측면) 전세계 의료 AI 시장 규모는 2023년 152억 달러에서 2028년 970억 달러로 연평균 44%가량 성장할 전망으로, 이중 디지털의료 제품용 온디바이스 AI 시장규모는 전체의 약 15% 추정 시 2028년 기준 약 145억 달러로 전망
- (사회적 측면) 심혈관 질환자, 급만성 호흡기질환자를 위한 관리용 디지털의료제품, 재택환자용 호흡치료기 등에 온디바이스 AI 기술개발 적용 성공 시, 네트워크 없는 서비스 제공을 통해 개인정보 유출 등 사회적 문제를 예방할 수 있으며, 적극적인 예측과 케어를 통한 사회적 비용 절감

3. 활용분야

□ 활용분야

- 디지털의료제품용 온디바이스 AI 모듈 기술을 통해, 네트워크 없이 장기간 생체 데이터 추적 및 관리가 가능하므로 개인 데이터 유출 우려가 없이 디지털헬스케어 산업 전반에 AI 확산 촉진 계기로 활용
- 온디바이스AI 기반 심혈관계 질환 또는 급·만성 호흡기질환 케어 제품을 통해, 급성 호흡기질환 유행에 대응하여 국가적 활용이 가능하고, 평상시에는 호흡기질환군의 위험상황 감소, 관리를 위한 국내외 재택관리 기기 및 서비스에 활용
- 병상 부족으로 호흡부전 환자의 재택 치료 케이스가 많은 국내외 의료환경에서, 온디바이스AI 기반 재택환자용 호흡치료기 개발을 통해, 자가호흡이 어려운 환자 에게 네트워크 없이도 AI기반 위험상황 예측 관리 기능 제공

- **연구개발기간 :** 57개월 이내(1차년도 개발기간 : 9개월, 2~5차년도 : 각 12개월)
- o 정부지원연구개발비 : '25년 12.4억원 이내(총 정부지원연구개발비 76.0억원 이내)
- o **주관연구개발기관**: 제한없음(기업 참여 필수)
- o 기술료 징수여부 : 징수